Finden Sie schnell luft luft wärmepumpe funktionsprinzip für Ihr Unternehmen: 351 Ergebnisse

BT101S Peristaltikpumpe,  1-4 Kanälen und Durchflussraten von 0,0001 bis 720 ml/min pro Kanal

BT101S Peristaltikpumpe, 1-4 Kanälen und Durchflussraten von 0,0001 bis 720 ml/min pro Kanal

Die BT101S ist eine Peristaltikpumpe mit einstellbarer Geschwindigkeit, die mit variablen Pumpenköpfen und Schläuchen Flüssigkeiten mit Flussraten zwischen 0,0001 und 720 ml/min fördert. Sie verfügt über Grundfunktionen wie einstellbare Drehrichtung, Start/Stopp, Maximalgeschwindigkeit (für schnelle Reinigung) und variable Geschwindigkeit. Dosiervorgänge nach vorher eingestellten Zeitintervallen sind mit der Taste "easy dispensing" möglich. Mithilfe der MODBUS RS485-Schnittstelle kann die Pumpe leicht mit externen Geräten wie PC, HMI oder SPS kommunizieren. Funktionen und Merkmale - Vierstellige LED-Anzeige zeigt Drehgeschwindigkeit, interne Steuerung, externe Steuerung, Fußschalter und andere Arbeitsmodi an - Bedienung über Folientastatur - Basisfunktionen u.a. Start/Stopp, einstellbare Drehrichtung, Maximalgeschwindigkeit, einstellbare Geschwindigkeit, automatische Speicherung der Parameter - Einfache Dosierfunktion, ermöglicht wiederholte Dosiervorgänge nach Zeit oder Volumen - Hohes Drehmoment, geeignet für ein breites Spektrum von Pumpenköpfen mit einem Kanal oder mehreren Kanälen - Leiterplatte durch Conformal Coating staub- und feuchtigkeitsbeständig - Anti-Interferenz-Funktion, breiter Eingangsspannungsbereich, geeignet für die komplexe Energieumgebungen - Externes Ein/Aus-Spannungssignal steuert Start/Stopp, Drehrichtung und einfache Dosierfunktion, optischer Entkoppler - Externes analoges Steuersignal regelt die Drehzahl - MODBUS RS485-Schnittstelle, einfach durch externes Gerät zu steuern - Optional: Fußschalter, Pulsations-Dämpfer, Leckage-Detektor und anderes Zubehör Spezifikationen Durchflussbereich: 0,0001-720 ml/min Drehzahlbereich: 0,1-150 U/min Drehzahlauflösung: bei 0,1-100 U/min Auflösung 0,1 U/min; bei 100-150 U/min Auflösung 1 U/min Durchflussgenauigkeit: 0,5 % Stromversorgung: AC100-240V, 50Hz/60Hz Stromverbrauch: < 30W Ein/Aus-Signal der externen Steuerung: 5V, 12V (Standard), 24V (optional). Externes analoges Steuersignal: 0-5V (Standard); 0-10V, 4-20mA (optional) Kommunikationsschnittstelle: MODBUS RS485 Zulässige Umgebungsbedingungen: 0-40 °C, < 80 % relative Luftfeuchtigkeit Schutzart: IP31 Abmessungen (L x B x H): 260 x 181 x 198 mm Gewicht: 4,5 kg
Endkappe

Endkappe

Endkappe Artikelnr.: IP8001 OEM# 2-06273
Kleindämpfer  WSD 0.165 L-9 Bar

Kleindämpfer WSD 0.165 L-9 Bar

Mit den Kleindämpfer für sanitäre Installationen werden Druckschläge in Sanitärinstallationen verhindert, die durch das schnelle Schliessen von Mischbatterien oder Ventilen verursacht werden. Kleindämpfer werden auch als Druckhalte- und Expansionsgefässe im Heizungsbereich sowie als Energiespeicher und Pulsationsdämpfer eingesetzt. Bauart: Körper aus Stahl, Farbschutzanstrich innen und aussen, mit Gasfüllventil, Membrane, nicht demontierbar. Druckflüssigkeiten: Wasser Andere Medien sind bei der Bestellung anzugeben. Betriebsdruck:: Max. 9 bar Gasfülldruck P0:: Bis 80% vom minimalen Betriebsdruck, max. 4 bar. Temperaturbereich:: Max. 70 °C Gewicht: 0,290 kg
Vertikale Zentrifugalpumpe - B80 KGK G1

Vertikale Zentrifugalpumpe - B80 KGK G1

Die Baureihe B80 KGK G1 (mit geschlossenem Laufrad) ist eine leistungsstarke und robuste Tauchkreiselpumpe mit Gleitlagerung, wälzgelagerter Antriebslaterne und IEC Normmotor. Über den radialen Pumpenauslass und das vertikale Steigrohr wird das Fördermedium aus dem Behälter gefördert. Die Kraftübertragung von Motor zur Pumpe erfolgt mittels einer drehelastischen, formschlüssigen Kupplung und ist für Anwendungen für den dauerhaften Betrieb ausgelegt. * geeignet für Fördermengen bis 30 m³/h * serienmäßig mit einem Saugkorb ausgestattet * eine Saugrohrverlängerung bis 2000 mm ist möglich * in Tauchtiefen von 500 - 4000 mm erhältlich Eigenschaften & Vorteile * Keine mediumsberührten Schrauben * Vibrations- und schwingungsfreier Betrieb * Hohe Lebensdauer und Betriebssicherheit * Lebensdauer-fettgeschmierte Wälzlager * Unabhängige Lagerung von Motor und Pumpe * Fremdspülung zum Schutz der Gleitlager bei feststoffhaltigen Medien Lutz | Jesco B80 KGK G1 6090-000
Arbeitsschutz / Atemschutz

Arbeitsschutz / Atemschutz

Komfort Vollmaske ohne Filter - aus EPDM - Kratzfeste beschlagfreie Polycarbonat Sichtscheibe - Rundgewindeanschluss EN 148-1 - 2 Ausatemventile Panorama Vollmaske ohne Filter - aus Kautschuk - Panorama Sichtscheibe aus Polycarbonat - Rundgewindeanschluss EN 148-1 - 1 Ausatemventil
COAX– Coaxial Agitator

COAX– Coaxial Agitator

STC-Koaxialrührwerke als komplette Produktionseinheit mit allem Zubehör: Zentral-Peripherrührsystem, Behälter, Steuerung Rühraufgaben Alle Rühraufgaben von flüssigen, pastösen und pulvrigen Medien Pasten Farben Klebstoffe Polymere Pharmazeutische Produkte Kosmetische Produkte Lebensmittel Spezielle Eigenschaften Kurze Aufheiz- und Abkühlzeiten schnelle gleichmäßige Temperaturverteilung im gesamten Behälterinnenraum Messung der Kerntemperatur direkt an der Rührwelle Beseitigung von Brückenbildung beim Schmelzvorgang pulvriger Stoffe Zerschlagung von Agglomeraten aus Dosiervorgang Verhinderung von Totzonen Schnelles Untermischen von Zuschlagstoffen Leicht reinigbar SIP und CIP fähig durch Sanitarydesign Bedarfangepasste Abdichtungssysteme Prozessoptimierte Rührsysteme Abstreifsysteme für beliebige Drehrichtung Einsatzbedingungen Antriebsleistung Zentral bis 200 kW Antriebsleistung Radial bis 100 kW Betriebsdruck p = 1 bis 11 bar (abs.) Betriebstemperatur T = -60 / +300 °C
Integrale Fasern

Integrale Fasern

genannt, sind ein Meilenstein für eine umweltfreundliche und ressourcenschonende Bauweise. Zur Herstellung von integralen Fasern wird der Roving mit einer alkaliresistenten Beschichtung benetzt und auf eine gewünschte Länge geschnitten. Diese AR-Beschichtung verbessert auch das Verbundverhalten der Fasern zum Beton. Die Fasern gibt es je nach Anforderung in den Längen von 4 bis 60 mm und mit einer linearen Faserdichte von 100 bis 450 tex.
Dauer einer Messung

Dauer einer Messung

Die Dauer einer Messung hängt stark davon ab, in welchem Umfang provisorische Abdichtungen vorgenommen werden müssen und inwieweit die einzelnen Leckageorte ermittelt und dokumentiert werden sollen. Der minimale Zeitaufwand für eine Messung ohne Gebäudepräparation und ohne ausführliche Lecksuche liegt bei etwa 2 Stunden. Inclusive Lecksuche sollte für ein Einfamilienhaus etwa ein halber Tag einkalkuliert werden.
elitec Smart Home System

elitec Smart Home System

, auf dem mittels One-Touch-Funktion die Speicherung von Überschussenergie im Fußboden realisiert werden kann. ●Die Berechnungsbreite weicht von der Lieferbreite ab und ist für die Planung heranzuziehen, damit der Verlegeabstand von 16 cm zwischen den Heizleitern eingehalten wird. Weitere technische Informationen sowie Montage- und Verlegehinweise finden Sie in de
Produktportfolio Frequenzumrichter

Produktportfolio Frequenzumrichter

damit der funke überspringt KFU tronic zum Produkt KFU A2- / A4- zum Produkt KFU 210  / 410 zum Produkt Dienstleistungen Zubehör zum Produkt KFU 230 / 430 zum Produkt Produkte Küenle Antriebssysteme GmbH & Co. KG
KONZ-Lufttechnik

KONZ-Lufttechnik

verfügt über Jahrzehntelange Erfahrung in der Konstruktion und als Hersteller von Industrieventilatoren und Industriegebläsen.
Inspektion von wartungspflichtigen Brandschutzklappen (BSK) und Brandschutzelementen (BSE)

Inspektion von wartungspflichtigen Brandschutzklappen (BSK) und Brandschutzelementen (BSE)

Sachkundige Durchführung der vom Gesetzgeber geforderten jährlichen Überprüfung der Brandschutzklappen. Anlegen von Protokollen pro einzelner Brandschutzklappe mit allen durchgeführten Wartungspunkten für Ihre Unterlagen. Fachliche Kompetenz ist durch Zertifizierung vorhanden. Sanierungsarbeiten, wie z.B. Austausch von defekten Brandschutzklappen, werden detailliert vorgeplant und nach einem genauen Zeitplan durchgeführt. Vorteile: Für Sie entstehen kalkulierbare Kosten und planbare Stillstandszeiten.
Prozess Potenzial Analyse

Prozess Potenzial Analyse

Mit der Prozess Potenzial Analyse (PPA) untersuchen wir die Eignung Ihrer Prozesse für Prozessoptimierung und IT-gesteuerte Prozessausführung. Die Analyse bringt Ihnen priorisierte Eignungspotenziale der Geschäftsprozesse und gesicherte Ergebnisse zur Verbesserung des Unternehmenserfolgs. Aufgabenstellung Ableitung der Kennzahlen und Erfolgsfaktoren zur Ermittlung der Prozesse, die am meisten zum Unternehmenserfolg beitragen Prozessportfolio zusammenstellen Bewertung dieser Prozesse hinsichtlich Eignung für Prozessoptimierung und IT-gesteuerte Prozessausführung. Machbarkeitsanalyse Investment, Kosteneinsparung und Bewertung der Ergebnisse Ergebnis Relevante Prozesse sind priorisiert. Nachvollziehbare Investitionsrechnung ist erstellt. Projektvorgehen ist abgestimmt. Investitionssicherheit ist gewährleistet. Nutzen dieses Vorprojekts Sie erhalten eine schnelle, mit Fakten belegte Messung der Optimierungspotenziale. Der Nutzen ist transparent nachgewiesen. Der Aufwand für das Vorprojekt ist gering. Steakholder sind involviert. Akzeptanz ist erreicht. Machbarkeit ist geprüft.
Laborabzüge für Sonderanwendungen

Laborabzüge für Sonderanwendungen

Abzüge für Anwendungen mit hoher thermischer Belastung und/oder Säurebelastung müssen gemäß DIN EN 14175-7 besonderen Anforderungen entsprechen. In den spezifischen Ausführungen haben wir die Auslegung der Luftströmung angepasst, um auch beim Arbeiten mit starken Wärmequellen eine laminare Strömung und sichere Absaugung zu gewährleisten. Zusätzlich sind durch die Verwendung eines Abrauchabzuges und geeigneter Werkstoffe auch Arbeiten mit Perchlorsäure und Flusssäure möglich.
Modal Approach zur Berechnung der Fluid-Struktur Interaktion

Modal Approach zur Berechnung der Fluid-Struktur Interaktion

Modal & Flutter Analysis ist eine effiziente Methode zur Analyse der Fluid-Struktur Interaktion in Kombination mit NUMECA’s Strömungslöser. Flattern (Flutter) ist ein wichtiges Thema im Design-Prozess, da es zu Materialermüdung und Beschädigung führen kann. Mit dem Modal Approach und den CFD Tools FINE™/Turbo und FINE™/Open mit OpenLabs™ können kritische Betriebsbereiche frühzeitig erkannt werden. Die Simulation basiert auf den Eigenfrequenzen und Eigenformen der Struktur. Im Vergleich zur klassischen FSI Simulation reduziert der Modal Approach die Rechenzeit und erhöht die Genauigkeit. Eine zusätzliche Einsparung der CPU-Zeit um 2 bis 3 Größenordnungen wird in der Kombination mit NLH Method erreicht. Key Features: einfacher und genauer Ansatz zur Analyse der Fluid-Struktur Interaktion, Bestimmung der Eigenfrequenzen und Eigenformen mit Hilfe eines beliebigen CSM Lösers, eine Berechnung – ein Code, schwache und starke Kopplung, Kompatibilität mit NLH Method, Kopplung mit MpCCI.
Risikobasierter Brandschutz

Risikobasierter Brandschutz

Ziel Ganzheitliche Lösungen, die standardisierte und leistungsorientierte Methoden optimal kombinieren und Faktoren wie Bauart, Lage, Nutzung, Personenbelegung, Brandlasten, Gebäudegeometrie und mehr berücksichtigen. Dienstleistung Risikobasierte Brandschutznachweise Fluchtweg-, Personenstromsimulationen Entrauchungsnachweise ASET-RSET-Nachweise Wärmeeintrag in Bauteile / Tragwerke Sondernachweise Mehrwert Zielorientiertes Lösungsmodelle Brandschutz als Chance, nicht als Verhinderer Keine kostenintensive Anforderungen aus dem Brandschutz an Schächte, Wände, Verglasungen, Entrauchung, Treppen, Türen Miteinbezug Know-How von über 30 Experten im Bereich Brandschutz Keine überdimensionierte Anlagen / Gewerke Flexibilität in der Nutzung Niedrige Wartungs- und Betriebskosten
Strömungssimulation Aerodynamik

Strömungssimulation Aerodynamik

Ausführung von Strömungsberechnungen um aerodynamische Eigenschaften zu bestimmen
Pinch-Analyse

Pinch-Analyse

die den Gesamtbedarf des Betriebs in sogenannten Verbundkurven zusammenfasst. Hierbei ist es unerheblich, ob die verschiedenen Prozesse bereits miteinander verschaltet sind oder woher die Wärme oder Kälte bereitgestellt wird. Die vorhandenen Strukturen werden sozusagen ausgeblendet.
MicroStream - Strömungsschleifen

MicroStream - Strömungsschleifen

Das Strömungsschleifen (AFM =  Abrasive Flow Machining) ist ein mechanischer Abtragungsprozess. Das Verfahren dient zur Erzeugung hoher Oberflächengüten an Innen- und Außenkonturen, zum gezielten Präzisions-Entgraten sowie zum definierten Kantenverrunden oder präzisen Entgraten von Verschneidungen. Dabei liegt der Fokus auf innenliegenden Kanälen komplexen Bauteilgeometrien. Die Bearbeitung von Außengeometrien ist ebenfalls möglich. Ihre Vorteile: - reproduzierbarer, zuverlässiger Prozess - gleichbleibende Qualität - Erhöhung der Standzeit von Werkzeugen - Wegfall von Handarbeit Allgemeiner Funktionsablauf – Schema Allgemeiner Funktionsablauf – Beschreibung Vor der Bearbeitung befindet sich das Medium im unteren Zylinder der Strömungsschleifmaschine. Im Arbeitsraum zwischen den beiden Kolben wird das Werkstück, das sich in einer entsprechend konstruierten Spannvorrichtung befindet, hydraulisch zwischen die beiden Zylinder geklemmt. In der Regel wird für jede Bauteilgeometrie eine eigene Aufnahmevorrichtung benötigt, um das Werkstück zu fixieren und den Streamer hindurchzuleiten. Während des Bearbeitungsprozesses wird das Medium (Streamer) vom unteren Mediumzylinder zum oberen Mediumzylinder bei definiertem Druck oder Kolbengeschwindigkeit durch das zu bearbeitende Werkstück gepresst. Ein Heiz- /Kühlsystem sorgt für eine konstante Viskosität des Mediums während der gesamten Bearbeitungszeit. Nach der Bearbeitung wird das Bauteil entnommen, zunächst mit Druckluft in einer Ausblaskabine ausgeblasen (Rückführung von Mediumresten) und anschließend in einem Ultraschallbad gereinigt. Video zum Strömungsschleifen
MicroStream - Strömungsschleifen

MicroStream - Strömungsschleifen

Das Strömungsschleifen (AFM = Abrasive Flow Machining) ist ein mechanischer Abtragungsprozess. Das Verfahren dient zur Erzeugung hoher Oberflächengüten an Innen- und Außenkonturen, zum gezielten Präzisions-Entgraten sowie zum definierten Kantenverrunden oder präzisen Entgraten von Verschneidungen. Dabei liegt der Fokus auf innenliegenden Kanälen komplexen Bauteilgeometrien. Die Bearbeitung von Außengeometrien ist ebenfalls möglich. Ihre Vorteile: reproduzierbarer, zuverlässiger Prozess, gleichbleibende Qualität, Erhöhung der Standzeit von Werkzeugen, Wegfall von Handarbeit. Allgemeiner Funktionsablauf – Schema Allgemeiner Funktionsablauf – Beschreibung Vor der Bearbeitung befindet sich das Medium im unteren Zylinder der Strömungsschleifmaschine. Im Arbeitsraum zwischen den beiden Kolben wird das Werkstück, das sich in einer entsprechend konstruierten Spannvorrichtung befindet, hydraulisch zwischen die beiden Zylinder geklemmt. In der Regel wird für jede Bauteilgeometrie eine eigene Aufnahmevorrichtung benötigt, um das Werkstück zu fixieren und den Streamer hindurchzuleiten. Während des Bearbeitungsprozesses wird das Medium vom unteren Mediumzylinder zum oberen Mediumzylinder bei definiertem Druck oder Kolbengeschwindigkeit durch das zu bearbeitende Werkstück gepresst. Ein Heiz- /Kühlsystem sorgt für eine konstante Viskosität des Mediums während der gesamten Bearbeitungszeit. Nach der Bearbeitung wird das Bauteil entnommen, zunächst mit Druckluft in einer Ausblaskabine ausgeblasen (Rückführung von Mediumresten) und anschließend in einem Ultraschallbad gereinigt. Video zum Strömungsschleifen
Glimmer-Leistungskondensator 41.7

Glimmer-Leistungskondensator 41.7

Offene Ausführung mit hoher Spannungsbelastbarkeit durch Reihenschaltung einzelner Teilkapazitäten. Unterschiedliche Dimensionierungen innerhalb der Kondensatoreneinheiten sind möglich.
Äußerer Blitzschutz Kernkompetenz

Äußerer Blitzschutz Kernkompetenz

Blitzschutzsysteme sollen bauliche Anlagen vor Brand oder mechanischer Zerstörung schützen und Personen in den Gebäuden vor Verletzung oder gar Tod bewahren. Ein Blitzschutzsystem besteht aus dem Äußeren Blitzschutz und dem Inneren Blitzschutz. Bei einer voll wirksamen Blitzschutzanlage bestehen jedoch gemäß EN 62305 Teil 1-4 Unterschiede zwischen dem Äußeren und Inneren Blitzschutz. Einen wirksamen Schutz vor direkten Blitzeinschlägen bieten fachgerecht und vorschriftsmäßig installierte Blitzschutzanlagen. Wir sind spezialisiert, alle Arten von Äußeren Blitzschutzanlagen zu berechnen, zu planen und zu errichten. Fach- und normgerechte Installation gemäß EN 62305 Teile 1-4 (VDE DIN 0185-305 Teil 1-4) Trennungsabstands-Berechnung Auswahl von zulässigen Materialen Sanierung, Modernisierung, Erweiterung bestehender Blitzschutzanlagen Eine defekte Blitzschutzanlage kann Leben gefährden und Sachwerte vernichten. Unser ausgebildetes Fachpersonal ist in ganz Europa für Sie im Einsatz. Die Funktionen des Äußeren Blitzschutzes sind: Auffangen von Direkteinschlägen mit einer Fangeinrichtung sicheres Ableiten des Blitzstromes zur Erde mit einer Ableitungseinrichtung Verteilen des Blitzstromes in der Erde über eine Erdungsanlage Er besteht aus Fangeinrichtung, Ableitungsanlage und Erdungsanlage: Die Fangeinrichtung ist der Teil des Äußeren Blitzschutzes, der für das Auffangen der Blitze zuständig ist. Die Ableitungseinrichtung leitet den Blitzstrom von der Fangeinrichtung senkrecht und auf kurzem Weg zu der Erdungsanlage. Die Erdungsanlage ist der Teil des Äußeren Blitzschutzes, der den Blitzstrom in die Erde leitet und dort verteilt. Bei der Festlegung der Anordnung und der Lage von Fangeinrichtungen werden drei Verfahren genutzt: Blitzkugelverfahren, Schutzwinkelverfahren und Maschenverfahren. Blitzkugelverfahren Das Blitzkugelverfahren ist die universelle Planungsmethode, die insbesondere für geometrisch komplizierte Anwendungsfälle empfohlen wird. Schutzwinkelverfahren Das Schutzwinkelverfahren wird für die meisten Gebäude mit einfacher Form empfohlen. Maschenverfahren Das Maschenverfahren ist zur Planung des Schutzes von ebenen Flächen geeignet.
Befüllsimulation mit Hilfe einer Strömungssimulation (CFD)

Befüllsimulation mit Hilfe einer Strömungssimulation (CFD)

Die Befüllung von Bauteilen kann sich als schwierig erweisen. Es sind viele Aspekte zu beachten, wie z.B. die Entlüftung, Effekte im Befüllrohr und dynamische Effekte im Medium (z.B. Wellen). In der Regel sind die folgenden Fragestellungen beim Befüllen von Interesse: - gibt es nach dem Befüllen Lufteinschlüsse? - wie verhält sich das Fluid im Befüllrohr? - wie schnell sind die lokalen Strömungsgeschwindigkeiten? - ändert sich das Füllverhalten bei verschiedenen Temperaturen? - schwingt das Fluid im Tank nach (Wellen im Behälter)? - werden abgelagerte Partikel aufgewirbelt? - wie schnell kann der Behälter gefüllt werden? Die nebenstehende Animation zeigt die Berechnungsergebnisse beim Befüllen eines Tanks. Die Simulation wurde transient und mehrphasig durchgeführt (Gasphase Luft und Flüssigphase Kraftstoff). Anhand des sich einstellenden Strömungsfeldes erfolgte die: - Abschätzung, ob es zu einer statischen Aufladung und zur Schaumbildung kommt - Optimierung der Einlassrohrgeometrie - Optimierung der Entlüftung - Reduktion aufgewirbelter Partikel durch Bleche im Tank - Reduktion der Befüllzeit
CFD Strömungssimulation

CFD Strömungssimulation

3D Strömung: Wir analysieren die klassischen Aggregatzustände der strömenden Medien gasförmig, flüssig und fest in Form von Partikeln oder Schüttgut.
Strömungssimulation: Fluid-Struktur-Interaktion (FSI)

Strömungssimulation: Fluid-Struktur-Interaktion (FSI)

Vollständig gekoppelte FSI-Simulation wird angewandt zur Simulation der Phasenverschiebung einer untersuchten Designvariante eines Coriolis-Massedurchflussmessers.
Prozesssimulation mit SIMSCI PRO / II

Prozesssimulation mit SIMSCI PRO / II

Anwendung für: Kolonnen und direkte Peripherie Eingabe: Spezifikation Zulauf, Produkt Randbedingungen Ausgabe: Fließschema Mengenströme Massenbilanz Wärmebilanz Position Zulauf Erforderliche theoretische Trennstufen Interne Belastungen Erforderliches Rücklaufverhältnis Physikalische Eigenschaften Temperaturprofil Druckprofil Kompositionsprofil Ausführung der Prozesssimulation Praxiserfahrene Ingenieure aus dem Sektor Chemie, Petrochemie und Raffinerie als freie Mitarbeiter
Strömungssimulation / CFD Simulation: Anwendungsgebiete

Strömungssimulation / CFD Simulation: Anwendungsgebiete

Produktentwicklung / Technische Geräte Produktentwicklung allgemein Auslegung und Optimierung von Pumpen Auslegung/Berechnung/Optimierung von Tanks (z. B. Schwappen), Lagertanks und Durchlaufventilen Auslegung von Laufrädern, Luftkanälen Gebläseentwicklung Mischer Automotive & Nautik Umströmung von Fahrzeugen (Aerodynamik) sowie Flugkörpern Motorkühlungen, Batteriekühlungen Wasserabscheider, Ölabscheider Turbolader KFZ-Klimatisierung Umströmung von Schiffskörpern Haushaltsgeräte Wäschetrockner Staubsauger, Staubsaugerdüsen Medical Beatmungsgeräte, Beatmungsmasken, Atemschutzmasken Pen-Injektoren/Insulin-Pens Baubranche, Anlagenbau Baubranche Überlaufbecken, Ausgleichsbecken; Ablauf/Überlauf, Durchmischungen Klärbecken Leitungen im Kraftwerksbereich, z. B. Kühlwasserleitung Öffentliche Gebäude (Arbeitsstättenverordnung), Tiefgaragen Belüftung / Frischluftversorgung Luftverteilung; CO2-Konzentration Entrauchung, Rauchableitung aus Gebäuden, Simulation Brandverläufe (Richtlinie VDI 6019) Anlagenbau Sammelbecken für Luftwäscher Lagerbecken für chemische Produkte; Rührwerke
Strömungsberechnungen / Strömungssimulationen

Strömungsberechnungen / Strömungssimulationen

Numerische Simulationen (Computational Fluid Dynamics – CFD) helfen Ihnen, die mit Strömungen verbundenen physikalischen Abläufe zu erfassen und sichtbar zu machen. Geschwindigkeiten, Drücke, Dichte-, Temperatur- und Konzentrationsverteilungen können an jeder beliebigen Stelle des Untersuchungsgebiets exakt berechnet werden. Sie profitieren von folgenden Vorteilen: Untersuchung von Objekten in realer Größe; Einsparung teurer Prototypen Betrachtung von Vorgängen, die messtechnisch nicht oder nur schwer zu verfolgen sind simultane Betrachtung von Stoff- und Wärmetransport einfache Variation von Geometrie und Strömungsparametern kürzere Produktentwicklungszyklen, Kostenreduzierung und Gewinn von Sicherheit Wir untersuchen Strömungen: von klein (µm-Spalte in Gleitlagern) bis groß (wie WEA, Stadtquartiere) von kalt (Erstarrung von Eis) bis heiß (Brenner, Öfen) von schnell (Explosion) bis langsam (Geothermie) Und das für unterschiedlichste fließende Medien.
4.2.1. Drosselung und Bypasssteuerung

4.2.1. Drosselung und Bypasssteuerung

Eine zusätzliche Drosselung oder eine Bypasssteuerung zur System-Anlagen-Kennlinie ändern am Ventilator selbst nichts, sondern beeinflussen nur die Steilheit der Anlagenkennlinie. Da beide Regelarten Verluste beinhalten, sollten sie nur bei Ventilatoren kleinerer Leistungen bzw. Minderungen angewendet werden. Zu empfehlen sind diese Verfahren, wenn eine häufige oder laufende Leistungsanpassung des Ventilators wegen wechselnder Betriebsbedingungen, etwa durch Drehzahlregelung bzw. polumschaltbaren Motor, oder durch Wechsel des Lüfterrades / Gehäuses sehr aufwendig und damit unwirtschaftlich wären. Ob Drosselung oder Bypass zu wählen ist, hängt vom Verlauf des Leistungsbedarfes zwischen den Betriebspunkten ab.
Technische Angaben - Schweissbolzen für Hubzündung nach DIN EN ISO 13918

Technische Angaben - Schweissbolzen für Hubzündung nach DIN EN ISO 13918

Technische Angaben - Schweissbolzen für Hubzündung DIN EN ISO 13918 (DIN 32500) Bolzenwerkstoff Hubzündungs-Bolzen werden aus S235 J2G3 - Werkstoff 4.8 (schweissgeeignet) mit Sonderanforderungen hergestellt. Dieser Stahl zeichnet sich besonders durch seine hervorragende Schweißeignung aus. Die chemische Analyse entspricht 4.8 (schweissgeeignet) nach DIN EN 10025. Für Gewindebolzen aus Werkstoff 4.8 (schweissgeeignet) werden folgende Festigkeitseigenschaften gewährleistet: Streckgrenze (Re) min. 340 N/mm2 Zugfestigkeit (Rm) min. 420 N/mm2 Dehnung (A5) min. 14 % Die Festigkeitsangaben für Gewindebolzen aus Werkstoff A2-50 (1.4301 / 1.4303) richten sich nach dem Behandlungs- zustand, als Mindestwerte wird gewährleistet: Streckgrenze (Rp0,2) min. 210 N/mm2 Zugfestigkeit (Rm) min. 500 N/mm2 Dehnung (AL) min. 0,6d Die genannten Werkstoffspezifikationen entsprechen DIN EN ISO 13918 und 14555. Gewinde Das Gewinde der Schweissbolzen ist standardmäßig kaltgewalzt. Der Faserverlauf wird dadurch nicht unterbrochen. Die Oberflächengüte wird wesentlich verbessert und die Oberflächenfestigkeit gesteigert. Das Gewinde ist verschleissfester und korrosionsbeständiger. Alle Gewindebolzen haben eine Gewinde nach DIN 13, Bl. 20, Toleranzlage 6 g. Oberflächenschutz Wenn nicht anderes bestellt, werden alle Hubzündungs- Bolzen, -Stifte und -Innengewindebuchsen Werkstoff 4.8 in blanker Ausführung geliefert. Bolzenabmessungen Die Länge l2 ist die Bolzenlänge nach dem Schweissen , d.h die Bolzen sind um die Schweisszugabe länger als das bestellte Nennmass. Die Kuppenausbildung (Fase, Zentrierung) der Bolzen und Stifte erfolgt fertigungsbedingt nach unserer Wahl Flussmittel Hubzündungs-Bolzen sind an der Schweissspitze entsprechend den schweisstechnischen Erfordernissen mit einem Flussmittel (Aluminium-Kugel) versehen, dass zur leichteren Zündung sowie zur Stabilisierung des Lichtbogens und zur Desoxidation des Schweissbades dient. Qualität und Dossierung des Flussmittels sind wesentliche Faktoren zur Erzielung einwandfreier und gleichmaessiger Schweissungen. Keramikringe Aus Schweisstechnischen Gründen muss jeder Bolzentyp mit einem speziellen Keramikring verschweisst werden. Schweisswulst Beim Aufschweissen des Bolzens bildet sich an der Schweissverbindung ein Wulst, dessen aussere Maße von der Form des Keramikringes bestimmt wird. In der Regel ist der Durchmesser des Schweisswulstes groesser als der Nenndurchmesser des Bolzens.